
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier

from sklearn.feature_selection import SelectKBest, mutual_info_classif
from mlxtend.feature_selection import SequentialFeatureSelector as SFS

from sklearn.preprocessing import StandardScaler, MinMaxScaler
import warnings
warnings.filterwarnings("ignore", category=FutureWarning)

from sklearn.preprocessing import LabelBinarizer
from sklearn.model_selection import train_test_split, KFold, StratifiedKFold, RepeatedStratifiedKFold
from sklearn.metrics import ConfusionMatrixDisplay, balanced_accuracy_score, precision_score
from sklearn.dummy import DummyClassifier
from sklearn.preprocessing import LabelBinarizer
from itertools import combinations

[CV] END .. total time=
0.4s
[CV] END .. total time=
0.3s
[CV] END .. total time=
4.0s
[CV] END .. total time=
5.3s
[CV] END .. total time=
0.1s
[CV] END .. total time=
0.1s
[CV] END .. total time=
0.1s
[CV] END .. total time=
0.3s
[CV] END .. total time=
0.3s
[CV] END .. total time=
0.2s
[CV] END .. total time=
0.1s
[CV] END .. total time=
0.2s
[CV] END .. total time=
0.3s
[CV] END .. total time=
0.3s
[CV] END .. total time=
0.3s

In [51]:

[CV] END .. total time= 1
2.5s
[CV] END .. total time= 1
8.4s
[CV] END .. total time= 1
2.6s
[CV] END .. total time= 3
7.9s
[CV] END .. total time= 4
8.3s

Task 1: Data Quality Plan
df = pd.read_csv('24291444.csv')
df.head()

df.shape

(30000, 18)

df.dtypes

obj_ID alpha delta u g r i

0 1.237663e+18 346.772076 0.798375 19.04310 18.74766 18.68006 18.49899 18.24167

1 1.237662e+18 215.945528 47.836140 23.82031 22.18570 20.93554 19.75348 19.13016

2 1.237661e+18 139.388332 35.051326 19.31936 19.10250 19.09940 18.90497 19.00351

3 1.237655e+18 246.485139 47.140976 21.99707 21.67077 21.46923 21.49820 21.13974

4 1.237664e+18 116.662350 49.729022 22.23060 21.72280 21.47487 21.12132 20.75071

In [2]:

Out[2]:

In [3]:

Out[3]:

In [4]:

obj_ID float64
alpha float64
delta float64
u float64
g float64
r float64
i float64
z float64
run_ID int64
rerun_ID int64
cam_col int64
field_ID int64
spec_obj_ID float64
class object
redshift float64
plate int64
MJD int64
fiber_ID int64
dtype: object

All the data feature types are numeric except the 'class' feature which is expected as

class labels observations as ['Galaxy','STAR','QSO']

df.nunique()

obj_ID 27431
alpha 30000
delta 30000
u 29404
g 29296
r 29220
i 29255
z 29232
run_ID 406
rerun_ID 1
cam_col 6
field_ID 817
spec_obj_ID 30000
class 3
redshift 29838
plate 5731
MJD 2124
fiber_ID 1000
dtype: int64

Mostly a unique value per observation for most of the photometric features, maybe due

to the sensitivity of the data collection machines, additionally, there are duplicates

present in the data, as obj_ID is a unique identifier and is less than the 30000 entries we

have, we are going to have to remove the duplicates

df['class'].value_counts() / df.shape[0]

Out[4]:

In [5]:

Out[5]:

In [6]:

class
GALAXY 0.592000
STAR 0.218167
QSO 0.189833
Name: count, dtype: float64

This data set is extremely unbalanced, as 59% of data are galaxies, 22% are stars and

19% are QSOs. For classification and evaluation, we will have to take this class

imbalance into account

df[df['obj_ID'].duplicated()]

There are 2569 duplicated items in this dataset, as sorted by obj_ID, which is supposed

to be a unique identifier of these values. Therefore, will need to remove these duplicates

df.describe()

obj_ID alpha delta u g r

425 1.237679e+18 20.288059 11.581189 21.65558 20.54378 20.30998 20.21100

737 1.237661e+18 164.050825 44.450899 20.34882 20.09278 19.94207 19.89994

961 1.237663e+18 341.846341 0.095160 20.79568 19.64293 18.87432 18.43873

1009 1.237664e+18 119.873909 51.729620 20.17974 18.46395 17.44095 16.92425

1233 1.237662e+18 176.465337 39.345863 20.39129 20.22710 20.01783 19.90640

...

29971 1.237658e+18 150.694800 45.849887 21.21550 20.86231 20.74509 20.39445

29982 1.237663e+18 339.218078 0.157844 25.55405 21.77067 20.18976 18.95730

29986 1.237663e+18 353.031463 0.649624 23.76088 22.15661 21.47430 20.71140

29988 1.237679e+18 28.577628 -2.252339 22.74284 21.17147 19.78127 19.29121

29997 1.237679e+18 8.784438 1.648707 23.10574 21.20415 20.97670 20.98010

2569 rows × 18 columns

Out[6]:

In [7]:

Out[7]:

In [8]:

Observations:

All numerical data, except class which is categorical

rerun_ID only has one value, irrelevant feature

cal_col has 6 values potentially irrelevant

runID only 406 values

Modified Julian Date (MJD) values might not be relevant for this classification task,

as stars do not change with respect to dates

there exists duplicate data

Dataset contains three identifier columns, which can lead to extreme overfitting

1. Drop duplicates

2. The spec object is different for all samples

3. check for outliers in redshift, u,g,r, i,z

4. normalize redshift and photometric

#keep raw df
df_raw = df

drop all duplicates for the same object identifier
df = df[~df['obj_ID'].duplicated()]

Removing irrelevant columns
df.drop(columns=['spec_obj_ID', 'obj_ID','run_ID','rerun_ID','field_ID','cam_col'
df.head()

obj_ID alpha delta u g

count 3.000000e+04 30000.000000 30000.000000 30000.000000 30000.000000 30000.000000

mean 1.237665e+18 177.752891 24.032529 22.072917 20.622373

std 8.433602e+12 96.608486 19.610344 2.250289 2.036687

min 1.237646e+18 0.005528 -17.613056 12.262400 10.511390

25% 1.237659e+18 127.616506 5.132893 20.335938 18.930343

50% 1.237663e+18 181.090496 23.328810 22.180605 21.084350

75% 1.237668e+18 234.268384 39.794247 23.674910 22.118523

max 1.237681e+18 359.999615 83.000519 30.660390 30.607000

Out[8]:

In [9]:

In [10]:

df.describe().T

Presumed relevant feature exploration

df.hist(figsize=(20, 25), layout=(4,3));
plt.grid(which='major', linestyle='-');

alpha delta u g r i z class

0 346.772076 0.798375 19.04310 18.74766 18.68006 18.49899 18.24167 QSO

1 215.945528 47.836140 23.82031 22.18570 20.93554 19.75348 19.13016 GALAXY

2 139.388332 35.051326 19.31936 19.10250 19.09940 18.90497 19.00351 QSO

3 246.485139 47.140976 21.99707 21.67077 21.46923 21.49820 21.13974 QSO

4 116.662350 49.729022 22.23060 21.72280 21.47487 21.12132 20.75071 GALAXY

count mean std min 25% 50%

alpha 27431.0 178.929725 96.075539 0.005528 128.557706 181.996685

delta 27431.0 24.075934 19.515966 -17.613056 5.606833 23.263707

u 27431.0 22.107274 2.256328 12.262400 20.360250 22.236840

g 27431.0 20.651527 2.037369 10.511390 18.959995 21.130090

r 27431.0 19.659585 1.847926 9.822070 18.144585 20.138530

i 27431.0 19.089482 1.743525 9.469903 17.738950 19.405670

z 27431.0 18.772540 1.750402 9.612333 17.463855 19.005920

redshift 27431.0 0.580647 0.740079 -0.009971 0.055789 0.428098

plate 27431.0 5124.311764 2912.718915 266.000000 2564.000000 4978.000000 7317.000000

fiber_ID 27431.0 449.189968 272.506128 1.000000 221.000000 432.000000 647.000000

Out[10]:

In [11]:

Out[11]:

In [12]:

Observations

alpha values seem 'clamped' at the extremes

delta values seem normally distributed

Photometric values: 'u','g','r','i', and 'z' seem psudo-normally distributed within the

observations.

Redshift values are severely right-skewed, a transformation might need to be done

to normalize this distribution

Plate, MJD, fiber do not seem to follow any distribution

numeric_columns = df.select_dtypes(['int64', 'float64']).columns
df[numeric_columns].plot(kind='box', subplots=True, figsize=(20,25), layout=(4,

In [13]:

Observations

alpha, delta, plate, MJD, and fiberID do not have any outliers

photometric features 'u','g','r','i','z' have outliers on the high and lower end, but not

very dense outliers region

redshift is significanly right-skewed and will need a transformation as there is heavy

high outliers in redshift distribution

Data Transformation

Investigation into redshift outliers

plotting redshift against itself and seeing how redshift values might affect the prediction class.
colors = {'GALAXY': 'red', 'STAR': 'blue', 'QSO':'green'}
plt.scatter(df['redshift'],df['redshift'],c=df['class'].map(colors),label=df['class'

From the plot above, we can see that Redshift values vs. class are almost linearly

separable, this means that we could clamp outliers to 95th percentile as QSO

observations get rarer in high redshift values.

REDSHIFT VALUES TRANSFORMATION

In [14]:

Because of the heavy-right skew in its distribution, I am going to log-scale this

distribution to make it more normally distributed after clamping, as there still are outliers

percentile95 = np.percentile(df['redshift'],95)

redshiftOutliers = df[df['redshift'] > percentile95]
redshiftOutliers

Clamping will affect 1500 rows of data

df['redshift'].plot.box();

alpha delta u g r i z class

52 184.641753 43.494613 22.95321 22.43908 22.01231 22.16328 22.24051

66 236.821944 25.160369 23.70864 20.77560 19.71128 19.61595 19.82036

135 355.897283 12.280289 20.69727 20.00488 19.75740 19.63135 19.41086

147 20.370838 11.450133 18.48399 17.59546 17.25394 17.03100 16.70826

186 9.589761 2.576984 23.73365 22.13621 22.31480 22.35993 21.93321

...

29907 190.187804 11.619725 21.66430 20.50776 20.26739 20.05617 19.95164

29911 170.567628 41.293285 21.63541 21.22299 21.12925 21.03539 20.61155

29945 155.517159 38.380584 21.03028 20.22529 20.26563 20.26219 20.27242

29959 239.489542 44.440527 20.86616 19.68577 19.44610 19.34450 19.30692

29989 239.222740 23.983202 21.75931 20.59475 20.34945 20.03026 19.55657

1372 rows × 11 columns

In [15]:

Out[15]:

In [16]:

show the box plot after clamping the redshift feature, still heavy outlier density
df = df[df['redshift'] < percentile95]
df['redshift'].plot.box();

In [17]:

After clamping, distribution is still heavily right-skewed, will attempt to apply a log

transformation to reduce skew

df['redshift'].transform(lambda x: np.log10(0.035+x)).plot.box();

Much better distribution than previous, with no outliers. will place this in effect

See class distribution for redshift outliers
redshiftOutliers['class'].value_counts()

class
QSO 1372
Name: count, dtype: int64

transform redshift
df.loc[:,'redshift'] = df['redshift'].transform(lambda x: np.log10(0.035+x))

#plot new redshift distribution
df['redshift'].hist(bins=30);

In [18]:

In [19]:

Out[19]:

In [20]:

In [21]:

Conclusion for redshift values

I was able to remove outliers by applying a log transformation in the redshift which left

me with a more uniformly distrbuted distribution than the original redshift distribution,

however, this distribution is still not normal, which means I will be scaling this distribution

using min-max scaling.

Exploration into photometric values

df[['u','g','r','i','z']].plot.box();In [22]:

df[['u','g','r','i','z']].hist(figsize=(20, 25), layout=(4,3), bins=30);

Some of these features have the same distribution shape and range, meaning they could

possible be correlated, something that classifiers could pick on, will look at correlation

matrices to prove this, and consider the feature as relevant

In [23]:

df[['u','g','r','i','z']].corr()

u g r i z

u 1.000000 0.855146 0.738062 0.631404 0.556179

g 0.855146 1.000000 0.937479 0.856727 0.781739

r 0.738062 0.937479 1.000000 0.965055 0.920111

i 0.631404 0.856727 0.965055 1.000000 0.969735

z 0.556179 0.781739 0.920111 0.969735 1.000000

Observations

The photometric features appear to follow a pseudo-normal distribution. Although there

exist outliers in this dataset and the range is fixed for this dataset (~10 - 30) we will

standardize the distribution using z-score normalization because I believe that the

outliers in these distributions still might hold valuable data and we cannot just clamp

these distributions. Additionally some values such as i and z are extremely well

correlated, which might be something to consider for classification.

Standarization of data
Because a large variety of these features excluding outliers seem normally (or semi

normally distributed), we are going to use z-score normalization for photometric values

U, G, R, I, Z, and for redshift values because of their distrbution, we are going to use

min-max normalization.

save a copy of the df without scaling
df_without_scaling = df

#create a dictionary to hold the scalers for each column to be scaled
scalers = {
 'alpha': MinMaxScaler(),
 'delta': MinMaxScaler(),
 'u': StandardScaler(),
 'g': StandardScaler(),
 'r': StandardScaler(),
 'i': StandardScaler(),
 'z': StandardScaler(),
 'redshift': MinMaxScaler(),
 'plate': MinMaxScaler(),
 'fiber_ID': MinMaxScaler()
}

In [24]:

Out[24]:

In [25]:

In [26]:

classes = df.pop('class')
for column in df.columns:
 df.loc[:,column] = scalers[column].fit_transform(df[[column]])

we are going to save the scalers we used in case we want to unscale the data back to its

original form in a dictionary with the key being the column name

append the classes back
df.loc[:,'class'] = classes

df

Choosing an Evaluation metric

This is an extremely large dataset, which makes leave-one-out cross validations

computationally infeasible. Additionally, as highlighted in our data exploration, this

dataset is very unbalanced. Therefore, we are going to use imbalanced evaluation

meaures such as the Balance Accuracy Rate, a weighted F1 measure, precision, and

recall, and a F1 measure to evaluate our classifier. This is the criterion and to further test

our models robustness, we will use K-fold cross-validation using our F1 measure to

evaluate the classifier.

I chose this because overall, we will be able to evaluate the relevance of retrieved results

in a way that is guaranteed to test the robustness of our model due to the class

alpha delta u g r i z

0 0.963256 0.182992 -1.334728 -0.908000 -0.494452 -0.292998 -0.255032

1 0.599843 0.650501 0.753244 0.748867 0.714330 0.429296 0.256216

2 0.387181 0.523432 -1.213983 -0.736995 -0.269715 -0.059248 0.183340

3 0.684677 0.643591 -0.043638 0.500711 1.000351 1.433848 1.412552

4 0.324052 0.669314 0.058430 0.525786 1.003374 1.216853 1.188700

...

29994 0.062218 0.516598 1.426348 1.538015 1.103550 0.902282 0.654735

29995 0.354924 0.455543 1.779457 1.176506 0.833457 0.547017 0.391501

29996 0.664502 0.523679 0.106888 0.474032 0.216203 0.034538 -0.029804

29998 0.640316 0.681693 -1.636254 -1.652594 -1.533409 -1.415761 -1.287810

29999 0.621233 0.677615 0.538875 0.127651 0.330421 0.258034 0.603586

26059 rows × 11 columns

In [27]:

In [28]:

Out[28]:

imbalance in the data. Therefore having multiple measures such as our balance accuracy

rate and our F1 measure will help us grasp how the models are performing despite the

challenges on the dataset and areas they lack in the classification tasks.

y = df.pop('class')
X = df

X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=0.30)

Evaluation metrics
scoring = ('balanced_accuracy', 'f1_weighted', 'precision_weighted', 'recall_weighted'
k = 5

Setup K-Fold validation
kFold = KFold(n_splits = k, shuffle=True)

Training and finding the winning classifier

Instantiating the models
decisionTree = DecisionTreeClassifier()
knn = KNeighborsClassifier()
SVMLinear = SVC(kernel='linear')
SVMPoly = SVC(kernel='poly')
SVM_RBF = SVC(kernel='rbf')
SVMSigmoid = SVC(kernel='sigmoid')

Evaluate using Cross Validation

cross validate decision tree
decisionTreeEvaluation = cross_validate(decisionTree, X, y, cv=kFold, scoring=scoring

cross validate KNN
KNN_Evaluation = cross_validate(knn, X, y, cv=kFold, scoring=scoring, verbose=2

cross validate SVM Linear
SVMLinearEvaluation = cross_validate(SVMLinear, X, y, cv=kFold, scoring=scoring

cross validate SVM Poly
SVMPolyEvaluation = cross_validate(SVMPoly, X, y, cv=kFold, scoring=scoring, verbose

cross validate SVM RBF
SVM_RBF_Evaluation = cross_validate(SVM_RBF, X, y, cv=kFold, scoring=scoring, verbose

cross validate SVM Sigmoid
SVMSigmoidEvaluation = cross_validate(SVMSigmoid, X, y, cv=kFold, scoring=scoring

In [29]:

In [30]:

In [31]:

In [32]:

[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 2 out of 5 | elapsed: 1.5s remaining:
2.3s
[Parallel(n_jobs=-1)]: Done 5 out of 5 | elapsed: 1.6s finished
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 2 out of 5 | elapsed: 0.3s remaining:
0.5s
[Parallel(n_jobs=-1)]: Done 5 out of 5 | elapsed: 0.9s finished
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 2 out of 5 | elapsed: 4.0s remaining:
6.0s
[Parallel(n_jobs=-1)]: Done 5 out of 5 | elapsed: 4.6s finished
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 2 out of 5 | elapsed: 6.8s remaining: 1
0.2s
[Parallel(n_jobs=-1)]: Done 5 out of 5 | elapsed: 7.5s finished
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 2 out of 5 | elapsed: 5.3s remaining:
7.9s
[Parallel(n_jobs=-1)]: Done 5 out of 5 | elapsed: 5.8s finished
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 2 out of 5 | elapsed: 20.9s remaining: 3
1.4s
[Parallel(n_jobs=-1)]: Done 5 out of 5 | elapsed: 23.4s finished

def printResultsEvaluation(evaluation: dict):
 for key in evaluation.keys():
 print(f'{key}: {round(evaluation[key].mean(),2)} +/- {round(np.std(evaluation

print(decisionTree)
printResultsEvaluation(decisionTreeEvaluation)
print()
print(knn)
printResultsEvaluation(KNN_Evaluation)
print()
print(SVMLinear)
printResultsEvaluation(SVMLinearEvaluation)
print()
print(SVMPoly)
printResultsEvaluation(SVMPolyEvaluation)
print()
print(SVM_RBF)
printResultsEvaluation(SVM_RBF_Evaluation)
print()
print(SVMSigmoid)
printResultsEvaluation(SVMSigmoidEvaluation)

In [33]:

In [34]:

DecisionTreeClassifier()
fit_time: 0.3 +/- 0.0055
score_time: 0.08 +/- 0.0017
test_balanced_accuracy: 0.95 +/- 0.0022
test_f1_weighted: 0.96 +/- 0.0016
test_precision_weighted: 0.96 +/- 0.0016
test_recall_weighted: 0.96 +/- 0.0017

KNeighborsClassifier()
fit_time: 0.02 +/- 0.0018
score_time: 0.24 +/- 0.0269
test_balanced_accuracy: 0.93 +/- 0.0027
test_f1_weighted: 0.95 +/- 0.0027
test_precision_weighted: 0.95 +/- 0.0027
test_recall_weighted: 0.95 +/- 0.0027

SVC(kernel='linear')
fit_time: 3.41 +/- 0.2552
score_time: 0.67 +/- 0.0297
test_balanced_accuracy: 0.95 +/- 0.0044
test_f1_weighted: 0.97 +/- 0.0028
test_precision_weighted: 0.97 +/- 0.0028
test_recall_weighted: 0.97 +/- 0.0027

SVC(kernel='poly')
fit_time: 5.81 +/- 0.43
score_time: 1.11 +/- 0.0762
test_balanced_accuracy: 0.94 +/- 0.0031
test_f1_weighted: 0.96 +/- 0.0018
test_precision_weighted: 0.96 +/- 0.0017
test_recall_weighted: 0.96 +/- 0.0018

SVC()
fit_time: 4.07 +/- 0.2955
score_time: 1.38 +/- 0.0501
test_balanced_accuracy: 0.95 +/- 0.0031
test_f1_weighted: 0.96 +/- 0.0025
test_precision_weighted: 0.97 +/- 0.0024
test_recall_weighted: 0.97 +/- 0.0025

SVC(kernel='sigmoid')
fit_time: 18.27 +/- 1.1574
score_time: 3.46 +/- 0.2257
test_balanced_accuracy: 0.51 +/- 0.0258
test_f1_weighted: 0.62 +/- 0.0113
test_precision_weighted: 0.64 +/- 0.0148
test_recall_weighted: 0.65 +/- 0.0179

Discussion on performance of models

The winning classifier after many rounds of playing with the parameters is the linear SVM

and the RBF SVM, suggesting that some features/patterns in the data should be linearly

separable, or at least in the same radial basis. Although a lot of the models came close

to this performance benchmark (basically 97% on all measures). Something that

surprised me the most was the training times for the polynomial SVM, making it a bad

time/performance tradeoff, as the linear SVM trains much faster and is slightly more

accurate. Additionally, the Sigmoid Kernel SVM performed poorly as it was not able to

capture the patterns in the data too accurately.

Overall the performance of the linear SVM was expected as by a high-relevance feature

such as redshift seem mostly linearly separable. The decision tree would probably pick

up on this pattern too as it also performed quite well, probably because of the linear

separability of redshift, making it an easy split rule inside the tree.

Side note

I realized that it is taking a lot of time to run these SVMs, especially the polynomial

kernel SVM, therefore, I am going to look at the learning curves for all of the models and

estimate about how many traning samples are needed to generate a 'generalizable'

result.

***** Note to Grader ******
Most of this code is modified and sourced from SciKit-Learn's Documentation
#Link: https://scikit-learn.org/dev/modules/generated/sklearn.model_selection.LearningCurveDisplay.html

from sklearn.model_selection import LearningCurveDisplay

fig, ax = plt.subplots(nrows=2, ncols=3, figsize=(10, 6), sharey=False)

common_params = {
 "X": X,
 "y": y,
 "train_sizes": np.linspace(0.1, 1.0, 10),
 "cv": kFold,
 "n_jobs": -1,
 "line_kw": {"marker": "o"},
 "std_display_style": "fill_between",
 "scoring": "f1_weighted",
}

axes = ax.flatten()

for idx, estimator in enumerate([decisionTree, knn, SVMLinear, SVMPoly,SVM_RBF,
 LearningCurveDisplay.from_estimator(estimator, **common_params, ax=axes[idx
 handles, label = axes[idx].get_legend_handles_labels()
 axes[idx].legend(handles[:2], ["Training Score", "Test Score"])
 axes[idx].set_title(f"Learning Curve for {str(estimator)}")

plt.tight_layout()
plt.show()

In [35]:

[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[learning_curve] Training set sizes: [2084 4169 6254 8338 10423 12508 14
592 16677 18762 20847]
[Parallel(n_jobs=-1)]: Done 25 out of 50 | elapsed: 1.0s remaining:
1.0s
[Parallel(n_jobs=-1)]: Done 50 out of 50 | elapsed: 2.1s finished
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[learning_curve] Training set sizes: [2084 4169 6254 8338 10423 12508 14
592 16677 18762 20847]
[Parallel(n_jobs=-1)]: Done 25 out of 50 | elapsed: 3.3s remaining:
3.3s
[Parallel(n_jobs=-1)]: Done 50 out of 50 | elapsed: 6.4s finished
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[learning_curve] Training set sizes: [2084 4169 6254 8338 10423 12508 14
592 16677 18762 20847]
[Parallel(n_jobs=-1)]: Done 25 out of 50 | elapsed: 13.3s remaining: 1
3.3s
[Parallel(n_jobs=-1)]: Done 50 out of 50 | elapsed: 31.5s finished
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[learning_curve] Training set sizes: [2084 4169 6254 8338 10423 12508 14
592 16677 18762 20847]
[Parallel(n_jobs=-1)]: Done 25 out of 50 | elapsed: 28.2s remaining: 2
8.2s
[Parallel(n_jobs=-1)]: Done 50 out of 50 | elapsed: 1.1min finished
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[learning_curve] Training set sizes: [2084 4169 6254 8338 10423 12508 14
592 16677 18762 20847]
[Parallel(n_jobs=-1)]: Done 25 out of 50 | elapsed: 43.1s remaining: 4
3.1s
[Parallel(n_jobs=-1)]: Done 50 out of 50 | elapsed: 1.5min finished
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[learning_curve] Training set sizes: [2084 4169 6254 8338 10423 12508 14
592 16677 18762 20847]
[Parallel(n_jobs=-1)]: Done 25 out of 50 | elapsed: 1.3min remaining: 1.
3min
[Parallel(n_jobs=-1)]: Done 50 out of 50 | elapsed: 3.1min finished

From this data, we can see that any where from 1000 to 5000 samples yield the best

results for generalizable results, this is the number I will use

Filter Technique
X_sample_train, _, y_sample_train, _ = train_test_split(X, y, train_size=1000,

mi = {}

i_scores = mutual_info_classif(X_train, y_train)

for i, j in zip(X_train.columns, i_scores):
 mi[i] = j

columnInfoGaindf= pd.DataFrame.from_dict(mi, orient='index', columns=['I-Gain'])
columnInfoGaindf.sort_values(by=['I-Gain'],ascending=False,inplace=True)

columnInfoGaindf

In [36]:

In [37]:

In [38]:

I-Gain

redshift 0.756098

plate 0.251924

z 0.115435

u 0.105711

g 0.103883

i 0.084999

r 0.061213

alpha 0.045432

fiber_ID 0.042707

delta 0.040229

Running SVM Classifiers with the top three features

topThreeFeatures = columnInfoGaindf[0:3]

topThreeDf = df[topThreeFeatures.index]

#cross validate SVM Linear
topThreeLinearEval = cross_validate(SVMLinear, topThreeDf, y, cv=kFold, scoring

cross validate SVM Poly
topThreePolyEval = cross_validate(SVMPoly, topThreeDf, y, cv=kFold, scoring=scoring

cross validate SVM RBF
topThree_RBF_Eval = cross_validate(SVM_RBF, topThreeDf, y, cv=kFold, scoring=scoring

cross validate SVM Sigmoid
topThreeSigmoidEval = cross_validate(SVMSigmoid, topThreeDf, y, cv=kFold, scoring

Out[38]:

In [39]:

In [40]:

[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 2 out of 5 | elapsed: 11.1s remaining: 1
6.6s
[Parallel(n_jobs=-1)]: Done 5 out of 5 | elapsed: 12.6s finished
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 2 out of 5 | elapsed: 16.8s remaining: 2
5.2s
[Parallel(n_jobs=-1)]: Done 5 out of 5 | elapsed: 18.5s finished
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 2 out of 5 | elapsed: 11.7s remaining: 1
7.5s
[Parallel(n_jobs=-1)]: Done 5 out of 5 | elapsed: 12.6s finished
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 2 out of 5 | elapsed: 35.5s remaining: 5
3.2s
[Parallel(n_jobs=-1)]: Done 5 out of 5 | elapsed: 38.0s finished

print(SVMLinear)
printResultsEvaluation(topThreeLinearEval)
print()
print(SVMPoly)
printResultsEvaluation(topThreePolyEval)
print()
print(SVM_RBF)
printResultsEvaluation(topThree_RBF_Eval)
print()
print(SVMSigmoid)
printResultsEvaluation(topThreeSigmoidEval)

In [41]:

SVC(kernel='linear')
fit_time: 9.41 +/- 0.898
score_time: 2.22 +/- 0.1421
test_balanced_accuracy: 0.9 +/- 0.0078
test_f1_weighted: 0.94 +/- 0.0038
test_precision_weighted: 0.95 +/- 0.0028
test_recall_weighted: 0.95 +/- 0.0032

SVC(kernel='poly')
fit_time: 15.28 +/- 1.0837
score_time: 2.18 +/- 0.2639
test_balanced_accuracy: 0.9 +/- 0.0039
test_f1_weighted: 0.94 +/- 0.003
test_precision_weighted: 0.94 +/- 0.003
test_recall_weighted: 0.94 +/- 0.0028

SVC()
fit_time: 8.86 +/- 0.6108
score_time: 3.12 +/- 0.0975
test_balanced_accuracy: 0.91 +/- 0.0024
test_f1_weighted: 0.95 +/- 0.0017
test_precision_weighted: 0.95 +/- 0.0017
test_recall_weighted: 0.95 +/- 0.0017

SVC(kernel='sigmoid')
fit_time: 28.61 +/- 2.8965
score_time: 6.96 +/- 0.3471
test_balanced_accuracy: 0.36 +/- 0.0312
test_f1_weighted: 0.51 +/- 0.0308
test_precision_weighted: 0.54 +/- 0.0537
test_recall_weighted: 0.53 +/- 0.0522

Running SVM Classifiers with the bottom three features

bottomThreeFeatures = columnInfoGaindf[-3:]

bottomThreeDf = df[bottomThreeFeatures.index]
bottomThreeDfSample = X_sample_train[bottomThreeFeatures.index]

cross validate SVM Linear
bottomThreeLinearEval = cross_validate(SVMLinear, bottomThreeDf, y, cv=kFold, scoring

cross validate SVM Poly
bottomThreePolyEval = cross_validate(SVMPoly, bottomThreeDfSample, y_sample_train

cross validate SVM RBF
bottomThree_RBF_Eval = cross_validate(SVM_RBF, bottomThreeDf, y, cv=kFold, scoring

cross validate SVM Sigmoid
bottomThreeSigmoidEval = cross_validate(SVMSigmoid, bottomThreeDf, y, cv=kFold,

In [42]:

[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 2 out of 5 | elapsed: 44.4s remaining: 1.
1min
[Parallel(n_jobs=-1)]: Done 5 out of 5 | elapsed: 48.6s finished
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 2 out of 5 | elapsed: 0.1s remaining:
0.2s
[Parallel(n_jobs=-1)]: Done 5 out of 5 | elapsed: 0.2s finished
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 2 out of 5 | elapsed: 1.2min remaining: 1.
8min
[Parallel(n_jobs=-1)]: Done 5 out of 5 | elapsed: 1.2min finished
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 2 out of 5 | elapsed: 38.5s remaining: 5
7.7s
[Parallel(n_jobs=-1)]: Done 5 out of 5 | elapsed: 41.1s finished

print(SVMLinear)
printResultsEvaluation(bottomThreeLinearEval)
print()
print(SVMPoly)
printResultsEvaluation(bottomThreePolyEval)
print()
print(SVM_RBF)
printResultsEvaluation(bottomThree_RBF_Eval)
print()
print(SVMSigmoid)
printResultsEvaluation(bottomThreeSigmoidEval)

SVC(kernel='linear')
fit_time: 39.76 +/- 2.9728
score_time: 6.17 +/- 0.9173
test_score: 0.48 +/- 0.0081

SVC(kernel='poly')
fit_time: 0.1 +/- 0.0202
score_time: 0.01 +/- 0.0022
test_score: 0.48 +/- 0.0424

SVC()
fit_time: 59.0 +/- 0.6537
score_time: 13.1 +/- 0.2782
test_score: 0.49 +/- 0.0033

SVC(kernel='sigmoid')
fit_time: 32.55 +/- 1.5061
score_time: 6.67 +/- 0.5076
test_score: 0.47 +/- 0.0203

Discussion

The results of running the SVMS with the top three most discriminative features and the

In [43]:

whole dataset were almost as expected; we were able to capture a lot of the information

as the f1-measure gave 95% compared to 97% on the whole dataset. This is surprising

because not only did these models take less time to train, but they also managed to be

almost as efficient.

While training the models on the bottom three features, results were also as expected as

most of the models did not even achieve an f1-measure of 0.5 meaning they almost did

not outperform random classification. Additiontally, something that surprised me was

how slow the fitting times were for the polynomial kernel, as it took almost 3 hours for it

to run with these features, therefore I had to sample the dataset and make it run with this

sample and generalize the results. This sample was taken from the learning curve of this

data vs quantity of training samples.

Wrapper Techniques
Using Sequential Forward Selection with each model and 5-fold cross-validation using f1 measure,
look discriminative features per SVM

define the SFS instances
sfs_Forward_Decision_Tree = SFS(decisionTree, forward=True,k_features=3, scoring
sfs_Forward_KNN = SFS(knn, forward=True,k_features=3, scoring='f1_weighted', cv
sfs_SVM_Linear = SFS(SVMLinear, forward=True,k_features=3, scoring='f1_weighted'
sfs_SVM_Poly = SFS(SVMPoly, forward=True,k_features=3, scoring='f1_weighted', cv
sfs_SVM_RBF = SFS(SVM_RBF, forward=True,k_features=3, scoring='f1_weighted', cv
sfs_SVM_Sigmoid = SFS(SVMSigmoid, forward=True,k_features=3, scoring='f1_weighted'

%%time
sfs_Forward_Decision_Tree.fit(X,y)
sfs_Forward_KNN.fit(X,y)
sfs_SVM_Linear.fit(X,y)
sfs_SVM_Poly.fit(X_sample_train,y_sample_train)
sfs_SVM_RBF.fit(X_sample_train,y_sample_train)
sfs_SVM_Sigmoid.fit(X_sample_train,y_sample_train)

[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
/opt/anaconda3/envs/dataMining/lib/python3.9/site-packages/sklearn/model_sel
ection/_validation.py:73: FutureWarning: `fit_params` is deprecated and will
be removed in version 1.6. Pass parameters via `params` instead.
 warnings.warn(
/opt/anaconda3/envs/dataMining/lib/python3.9/site-packages/sklearn/model_sel
ection/_validation.py:73: FutureWarning: `fit_params` is deprecated and will
be removed in version 1.6. Pass parameters via `params` instead.
 warnings.warn(
/opt/anaconda3/envs/dataMining/lib/python3.9/site-packages/sklearn/model_sel
ection/_validation.py:73: FutureWarning: `fit_params` is deprecated and will
be removed in version 1.6. Pass parameters via `params` instead.
 warnings.warn(
/opt/anaconda3/envs/dataMining/lib/python3.9/site-packages/sklearn/model_sel

In [44]:

In [45]:

be removed in version 1.6. Pass parameters via `params` instead.
 warnings.warn(
/opt/anaconda3/envs/dataMining/lib/python3.9/site-packages/sklearn/model_sel
ection/_validation.py:73: FutureWarning: `fit_params` is deprecated and will
be removed in version 1.6. Pass parameters via `params` instead.
 warnings.warn(
CPU times: user 1.45 s, sys: 562 ms, total: 2.01 s
Wall time: 9min 48s
[Parallel(n_jobs=-1)]: Done 3 out of 8 | elapsed: 0.3s remaining:
0.6s
[Parallel(n_jobs=-1)]: Done 8 out of 8 | elapsed: 0.4s finished

[2024-10-31 18:37:42] Features: 3/3 -- score: 0.6721743945939638

def printSFS_Results(sfsResult):
 print(f'Estimator: {str(sfsResult.estimator)}')
 print(f'Top 3 features: {sfsResult.k_feature_names_}')
 print(f'F1 measure of model with top 3 features: {sfsResult.k_score_}')
 print()

printSFS_Results(sfs_Forward_Decision_Tree)
printSFS_Results(sfs_Forward_KNN)
printSFS_Results(sfs_SVM_Linear)
printSFS_Results(sfs_SVM_Poly)
printSFS_Results(sfs_SVM_RBF)
printSFS_Results(sfs_SVM_Sigmoid)

Out[45]: ▸ i SequentialFeatureSelector

▸ estimator: SVC

▸ ? SVC

In [46]:

In [47]:

https://scikit-learn.org/1.5/modules/generated/sklearn.svm.SVC.html

Estimator: DecisionTreeClassifier()
Top 3 features: ('g', 'i', 'redshift')
F1 measure of model with top 3 features: 0.9641583472902701

Estimator: KNeighborsClassifier()
Top 3 features: ('u', 'redshift', 'plate')
F1 measure of model with top 3 features: 0.9626760593211084

Estimator: SVC(kernel='linear')
Top 3 features: ('g', 'i', 'redshift')
F1 measure of model with top 3 features: 0.9662490242892936

Estimator: SVC(kernel='poly')
Top 3 features: ('alpha', 'u', 'redshift')
F1 measure of model with top 3 features: 0.9396693869842577

Estimator: SVC()
Top 3 features: ('delta', 'u', 'redshift')
F1 measure of model with top 3 features: 0.9416980987867076

Estimator: SVC(kernel='sigmoid')
Top 3 features: ('u', 'i', 'redshift')
F1 measure of model with top 3 features: 0.6721743945939638

Discussion

When using the filter technique, we got the result that the top three discriminative

features are ['redshift','plate','z'], which is what we expected, as redshift is almost

linearly separable and SVMs could take advantage of that. However, when we used the

wrapper technique, the results for the three most discriminative features started to vary.

Not to my surprise, all of the feature subsets with the wrapper technique included the

redshift feature, indicating that it is a relevant feature for all models, most SVMS with

high f1-measure included a plate, which is what we also see with the filter technique.

However, then every SVM and other estimator looks at relevance with photometric

values such as 'u' (count 5/6) 'g' (count 1/6), or 'z' (count 1/6). This might appeal to the

individual kernels of the SVMs and how they learn from data. This behavior was also

expected from using a Wrapper Technique.

Some differences indicate that in the filter technique 'u' was not shown to be a

discriminative feature, however, most SVMs and estimators used it well in conjunction

with the other two included in the filter subset.

Task 7 Discussion
When we look at the performance of the different classifiers from task 4, and the

classifier's performance on tasks 5 and 6, results are as expected. When performing

feature selection, you have can expect to have a dimensionality-accuracy tradeoff. From

this tradeoff, you are trying to maximize your accuracy while minimizing your

dimensionality. This is why when we used feature selection with the filter approach and

with the wrapper approach, we get to see a decrease of about 0.01 in our f1 measure,

which is expected, however, given that we went from 9 features to 3 features, and

managed only to lose 0.01 on our f1 measure, this tradeoff is worth it. Especially when

models take a long time to train like SVMs in this case.

The decrease in accuracy after feature selection also might signal that the other features

also play a role in the models' learning accuracy, which might signify that most features

in the dataset are relevant and that models can learn from them.

ROC Curves
pair_list = list(combinations(y.unique(),2))
label_binarizer = LabelBinarizer().fit(y_train)
y_onehot_test = label_binarizer.transform(y_test)
y_onehot_test.shape # (n_samples, n_classes)
target_names = ['GALAXY','QSO','STAR']

***** Note to Grader ******
Most of this code is modified and sourced from SciKit-Learn's Documentation
Link: https://scikit-learn.org/dev/auto_examples/model_selection/plot_roc.html#sphx-glr-auto-examples-model-selection-plot-roc-py

def plotROCCurve(classifier):
 y_score = classifier.fit(X_train, y_train).predict_proba(X_test)

 fpr_grid = np.linspace(0.0, 1.0, 1000)

 pair_scores = []
 mean_tpr = dict()

 fig, axs = plt.subplots(1, 3, figsize=(15, 5))

 for ix, (label_a, label_b) in enumerate(pair_list):
 a_mask = y_test == label_a
 b_mask = y_test == label_b
 ab_mask = np.logical_or(a_mask, b_mask)

 a_true = a_mask[ab_mask]
 b_true = b_mask[ab_mask]

 idx_a = np.flatnonzero(label_binarizer.classes_ == label_a)[0]
 idx_b = np.flatnonzero(label_binarizer.classes_ == label_b)[0]

 fpr_a, tpr_a, _ = roc_curve(a_true, y_score[ab_mask, idx_a])
 fpr_b, tpr_b, _ = roc_curve(b_true, y_score[ab_mask, idx_b])

In [48]:

In [49]:

 mean_tpr[ix] = np.zeros_like(fpr_grid)
 mean_tpr[ix] += np.interp(fpr_grid, fpr_a, tpr_a)
 mean_tpr[ix] += np.interp(fpr_grid, fpr_b, tpr_b)
 mean_tpr[ix] /= 2
 mean_score = auc(fpr_grid, mean_tpr[ix])
 pair_scores.append(mean_score)

 ax = axs[ix]
 ax.plot(
 fpr_grid,
 mean_tpr[ix],
 label=f"Mean {label_a} vs {label_b} (AUC = {mean_score:.2f})",
 linestyle=":",
 linewidth=4,
)
 RocCurveDisplay.from_predictions(
 a_true,
 y_score[ab_mask, idx_a],
 ax=ax,
 name=f"{label_a} as positive class",
)
 RocCurveDisplay.from_predictions(
 b_true,
 y_score[ab_mask, idx_b],
 ax=ax,
 name=f"{label_b} as positive class",
 plot_chance_level=True,
)
 ax.set(
 xlabel="False Positive Rate",
 ylabel="True Positive Rate",
 title=f"{label_a} vs {label_b} ROC curves",
)
 ax.legend(loc="lower right")

 fig.suptitle('ROC Curves for One vs One Classification using ' + str(classifier
 plt.tight_layout()
 plt.show()

 print(f"Macro-averaged One-vs-One ROC AUC score:\n{np.average(pair_scores):

plotROCCurve(decisionTree)
plotROCCurve(knn)
plotROCCurve(SVMLinear.set_params(probability=True))
plotROCCurve(SVMPoly.set_params(probability=True))
plotROCCurve(SVM_RBF.set_params(probability=True))
plotROCCurve(SVMSigmoid.set_params(probability=True))

In [50]:

Macro-averaged One-vs-One ROC AUC score:
0.96

Macro-averaged One-vs-One ROC AUC score:
0.97

Macro-averaged One-vs-One ROC AUC score:
0.99

Macro-averaged One-vs-One ROC AUC score:
0.99

Macro-averaged One-vs-One ROC AUC score:
0.99

Macro-averaged One-vs-One ROC AUC score:
0.77

Discussion

The ROC curves for the three classes reveal something quite interesting: almost all of

the models are great at correctly distinguishing QSOs from Stars and Galaxies from stars

with almost 100% accuracy (This might be due to the linear separability of these two

classes). However, when looking at the less linearly separable classes according to our

redshift graph the areas where redshift tends to blend between QSO classification and

galaxy classification, that is where most of the error for our classifiers come in.

Additionally, from the ROC curves, we can interpret that the linear SVM and the RBF

Classifiers are the best models for all classification tasks for this dataset averaging

almost 0.99 of the Area Under the Curve Measure. I am very satisfied with the

performance of these classifiers, as they are correctly classifying about 97% of the time.

To take research further, I would recommend looking at more significant features similar

to redshift which are capable of distinguishing QSOs and Galaxies in a linearly separable

way similar to how redshift can distinguish Stars from QSOs and Galaxies in a linearly

separable way.

Correlations
I looked at the correlation values given by the wrapper technique and found that there

are some very good correlations between features, as I mentioned in that part of the

data exploration. This reveals that further feature engineering, in order to differentiate

QSOs from Galaxies, can be done to further increase the accuracy of the models. This

might be able to explain why all of the features performed better than using the top 3, as

3 top features are good, but maybe combinations of 3 photometric values are how the

model explains QSOs vs Galaxies. Overall, something that surprised me was that the

default for the SVM models performs best, as I tried to set the C value high and low but

had no success, and performance just seemed to degrade. Overall, if I had more time, I

would definitely look into the association with all the features to QSOs and Galaxies and

how I might be able to find more feature combinations that explain their difference to

improve classification accuracy. Overall I am very happy with this project and enjoyed

solving it.

